Generation of hexagonal close-packed ring-shaped structures using an optical vortex
نویسندگان
چکیده
Abstract An optical vortex possesses a ring-shaped spatial profile and orbital angular momentum (OAM) owing to its helical wavefront. This form of structured light has garnered significant attention in recent years, it enabled new investigations fundamental physics applications. One such exciting application is laser-based material transfer for nano-/micro-fabrication. In this work, we demonstrate the single-pulse laser beam direct printing structures composed hexagonal close-packed, mono-/multi-layered nanoparticles which exhibit ‘structural color’. We compare contrast interaction with both dielectric metallic offer physical insight into how OAM beams interacts matter. The demonstrated technique holds promise not only photonic-based nano-/micro-fabrication, but also as means sorting particles on nanoscale, technology term ‘optical nanoparticle sorting’.
منابع مشابه
New Tetrahedrally Close-Packed Structures
We consider mathematical models of foams and froths, as collections of surfaces which minimize area under volume constraints. Combinatorially, because of Plateau’s rules, a foam is dual to some triangulation of space. We examine the class of foams known as tetrahedrally close-packed (TCP) structures, which includes the one used by Weaire and Phelan in their counterexample to the Kelvin conjectu...
متن کاملAtomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg
We have investigated twin boundaries in double-lattice hexagonal close-packed metallic materials, focusing on their atomic geometry. Combining accurate ab-initio methods and large-scale atomistic simulations we address the following two fundamental questions: (i) What are the possible intrinsic twin boundary structures in hcp crystals? (ii) Are these structures stable against small distortions?...
متن کاملThe Strength of Binary Junctions in Hexagonal Close-Packed Crystals
A comparative study of non-coplanar binary dislocation junctions in magnesium (Mg) and beryllium (Be) is presented to examine the effects of elastic properties and active Burgers vectors on junction formation and destruction in hexagonal close-packed (hcp) crystals via discrete dislocation dynamics simulations. Two junction configurations formed at intersecting prismatic ð01 10Þ=basal ð0001Þ pl...
متن کاملThermodynamics of hexagonal-close-packed iron under Earth’s core conditions
The free energy and other thermodynamic properties of hexagonal-close-packed iron are calculated by direct ab initio methods over a wide range of pressures and temperatures relevant to the Earth’s core. The ab initio calculations are based on density-functional theory in the generalized-gradient approximation, and are performed using the projector augmented wave approach. Thermal excitation of ...
متن کاملDislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals
The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanophotonics
سال: 2021
ISSN: ['2192-8606', '2192-8614']
DOI: https://doi.org/10.1515/nanoph-2021-0437